skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "López, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Nanomechanical devices made from ultrathin materials are transforming diverse fields, including sensing, signal processing, and quantum technologies. However, as these materials become thinner, their low bending rigidity poses significant fabrication challenges, and achieving nanometer-thick flat cantilevers with consistent and predictable mechanical responses has remained elusive despite decades of research. Here we present nanometer-thick, ultraflat cantilever resonators fabricated using atomic layer deposition. By effectively mitigating the effects of uncontrollable built-in strain and geometric disorder, the ultraflat nanocantilevers exhibit resonance frequencies closely aligned with thin-plate theory predictions and display low sample-to-sample variability. These cantilevers maintain mechanical stability in both vacuum and air environments, even at large length-to-thickness ratios of up to 3000. The ultraflat nanocantilevers are approaching the thickness limit, beyond which thermal fluctuations at room temperature can spontaneously induce random ripples in otherwise flat films. 
    more » « less
  2. Thermally induced ripples are intrinsic features of nanometer-thick films, atomically thin materials, and cell membranes, significantly affecting their elastic properties. Despite decades of theoretical studies on the mechanics of suspended thermalized sheets, controversy still exists over the impact of these ripples, with conflicting predictions about whether elasticity is scale-dependent or scale-independent. Experimental progress has been hindered so far by the inability to have a platform capable of fully isolating and characterizing the effects of ripples. This knowledge gap limits the fundamental understanding of thin materials and their practical applications. Here, we show that thermal-like static ripples shape thin films into a class of metamaterials with scale-dependent, customizable elasticity. Utilizing a scalable semiconductor manufacturing process, we engineered nanometer-thick films with precisely controlled frozen random ripples, resembling snapshots of thermally fluctuating membranes. Resonant frequency measurements of rippled cantilevers reveal that random ripples effectively renormalize and enhance the average bending rigidity and sample-to-sample variations in a scale-dependent manner, consistent with recent theoretical estimations. The predictive power of the theoretical model, combined with the scalability of the fabrication process, was further exploited to create kirigami architectures with tailored bending rigidity and mechanical metamaterials with delayed buckling instability. 
    more » « less
    Free, publicly-accessible full text available March 25, 2026
  3. null (Ed.)
    Undergraduate mathematics education can be experienced in discouraging and marginalizing ways among Black students, Latin students, and white women. Precalculus and calculus courses, in particular, operate as gatekeepers that contribute to racialized and gendered attrition in persistence with mathematics coursework and pursuits in STEM (science, technology, engineering, and mathematics). However, student perceptions of instruction in these introductory mathematics courses have yet to be systematically examined as a contributor to such attrition. This paper presents findings from a study of 20 historically marginalized students’ perceptions of precalculus and calculus instruction to document features that they found discouraging and marginalizing. Our analysis revealed how students across different race-gender identities reported stereotyping as well as issues of representation in introductory mathematics classrooms and STEM fields as shaping their perceptions of instruction. These perceptions pointed to the operation of three racialized and gendered mechanisms in instruction: (i) creating differential opportunities for participation and support, (ii) limiting support from same-race, same-gender peers to manage negativity in instruction, and (iii) activating exclusionary ideas about who belongs in STEM fields. We draw on our findings to raise implications for research and practice in undergraduate mathematics education. 
    more » « less
  4. A single micro-electromechanical (MEMS) resonator can be shown to exhibit behaviors unexpected in a simple resonant structure. For small driving forces, the resonator displays typical simple harmonic oscillator re- sponse. As the driving force is increased, the resonator shows the slightly more complex, but well understood, Duffing response. Rather unexpected response behavior can appear when the resonator frequency is detuned by nonlinear- ity to where two oscillatory modes of the resonator begin to interact through nonlinear coupling due to an internal resonance. The paper focuses on how the resonator response changes as the internal resonance is approached in the operating parameter space and how that behavior is conveniently represented in a bifurcation diagram. This behavior is accurately captured by a generic mathematical model. We describe an analysis of the model which shows how this coupled response varies with the system and drive parameters, especially focusing on the nonlinear coupling strength between the two modes. 
    more » « less